CHEMICAL & POLYMER INSIGHTS

What Is Coil and Can Coating? How Does MPO Play A Role?

Coil and can coating is an organic material that’s applied on rolled metal strip in a continuous process which includes cleaning (if necessary) and chemical pre-treatment of the metal surface.  It also includes either one-sided or two-sided, single or multiple application of (liquid) paints or coating powders, which are subsequently cured and/or laminated with permanent plastic films, cleaning, chemical pretreatment, primer coat application, curing, final coat application, second curing, exit accumulator, and recoilers.

The following 12 steps take place on a modern coating line:

  • Step 1:  Mechanical stitching of the strip to its predecessor
  • Step 2: Cleaning the strip
  • Step 3:  Power brushing
  • Step 4:  Surface treatment by chemical conversion
  • Step 5: Drying the strip
  • Step 6*:  Application of primer on one or both sides
  • Step 7:  Passage through the first curing oven (between 15 and 60 seconds)
  • Step 8: Cooling the strip
  • Step 9:  Coating the finish on one or both sides
  • Step 10:  Passage through the second curing oven (between 15 and 60 seconds)
  • Step 11:  Cooling down to room temperature
  • Step 12:  Rewinding of the coated coil

*Note: from step 6 on, materials touching the surface will make a difference in each step.

 

Why Use Can and Coil Coating

Post-coating was costly, time-consuming, and environmentally harmful. Formed parts can have many holes, recessed areas, valleys, and hidden areas that make them difficult to clean and uniformly paint.  

Coil coating is the continuous and highly automated industrial process for efficiently coating coils of metal. Because the metal is treated before it is cut and formed, the entire surface is cleaned and treated, providing tightly-bonded finishes.

Manufacturers produce and ship 4.5 million tons of coil-coated steel and aluminum  in North America each year, with an additional 5 million tons produced and shipped in Europe. In almost every five-year period since the early 1980s, the growth rate of coil-coated metal has exceeded the growth rates of steel and/or aluminum production.

 

Where Is Can and Coil-Coated Material Used?

Pre-painted metal is used in a variety of products. It can be formed for many different applications, including those with T bends, without loss of coating quality. Major industries use pre-painted metal in products such as building panels, metal roofs, wall panels, garage doors, office furniture (desks, cubicle divider panels, file cabinets, and modular cabinets), home appliances (refrigerators, dishwashers, freezers, range hoods, microwave ovens, and washers and dryers), heating and air-conditioning outer panels and ductwork, commercial appliances, vending machines, foodservice equipment and cooking tins, beverage cans, and automotive panels ,and parts (fuel tanks, body panels, bumpers).  The list continues to grow, with new industries making the switch from post-painted to pre-painted processes each year.

Some high-tech, complex coatings are applied with the coil coating process. Coatings for cool metal roofing materials, smog-eating building panels, antimicrobial products, anti-corrosive metal parts, and solar panels use this process. Pretreatments and coatings can be applied with the coil coating process in very precise, thin, uniform layers, and makes some complex coatings feasible and more cost-effective.

The largest market for pre-painted metal is in both commercial and residential construction. Many choose pre-painted metal for its quality, low cost, design flexibility, and environmentally beneficial properties. A wide range of color options are available with pre-painted metal, including vibrant colors for modern designs, and natural, weathered finishes in rustic expressions. Pre-painted metal also can be formed, almost like plastic, in fluid shapes. This flexibility allows architects to achieve unique, expressive designs using metal.

 

What Is Used in Can and Coil Coatings?  

A number of chemicals are used in can and coal coatings, including polyesters, plastisols, polyurethanes, polyvinylidene fluorides (PVDF), epoxies, primers, backing coats and laminate films. For each product, the coating is built up in a number of layers.

Primer coatings form the essential link between the pretreatment and the finish coating. The composition of the primer will vary depending on the type of finish coat used. Primers require compatibility with various pretreatments and top coat paint systems; therefore, they usually comprise a mixture of resin systems to achieve this end.

Backing coats are applied to the underside of the strip, with or without a primer. The coating is generally not as thick as the finish coating used for exterior applications. Backing coats are generally not exposed to corrosive environments and not visible in the end application.

 

Examples of  Polyester Resin Formulation

Several polyester formulations appear in patent US6413648 to show a general synthesis of polyesters used in can and coil coating. Polyesters with specific physical properties and Tgs are used in can and coil coatings; formulators usually deploy a blend of multiple polyesters (at least two), one with higher Tg and one with lower Tg.

Experiment I
EG 294
NPG 510
PA 409
IPA 458
TA 611
Tg 50
Experiment II
EG 301
NPG 551
PA 576
ADPA 852
Tg -15
Experiment III
1,2-PG 787
TMP 127
AA 155
IPA 1092
TA 465
Tg 49
Experiment IV
EG 124
NPG 468
DEP 213
TMP 131
AA 689
IPA 695
TA 611
Tg -14
Experiment V
EG 106
NPG 546
HG 50
CHMG 123
1,2-PG 65
IPA 1271
1,4-CHCDA 146
Tg 45

 

 

 

 

 

 

 

Neopentyl glycol (NPG) is widely used in these formulations to offer flexibility, humidity resistance, UV resistance, low Tg, and liquidity that’s easy to handle.  The list below compares the physical properties of diol monomers that are commonly used in the synthesis of polyester polyols. This list illustrates how easy the diol can be handled and how easy the reaction of polyesterification can be controlled.

  PG MPO BDO Neopentyl HDO
Melting Point, °C < -60 -54 16 125 43
Boiling Point, °C 189 212 235 206 250
Functionality 1° & 2° 1° 1° 1° 

2-methyl-1,3-propanediol (MPO) is recognized as a better alternative for NPG not only in price, but also since it offers more convenience than NPG in storage, reaction, transportation, etc. (+ is good, - is bad, / is no data).

  MPO NPG
Freeze Point ++ --
Handling ++ --
Low Color ++ +
Esterification React ++ +
Urethane Ext. + /
Hydrolytic Stability ++ ++
UV Stability + +
Amorphous Polymer ++ +
Tensile Polymer +
Low Cost ++  + 
Availability  ++ + 

The following charts illustrate the difference between MPO and NPG with regard to hydrolysis resistance and reactivity in polyester formation. In both cases, MPO performs better.

                                                    Hot water degradation test
                                   over 12hrs @ 90°C ( 10% Water + 90% Polyol)

hot-water-degradation-test

reaction-times-diols-vs-acid-number

In the chart below, we compared gloss retention performance among four formulations, based on four different polyesters.  The results show consistently good performance with MPO-based polyester formulations. In fact, the MPO-based polyester formations are better than their NPG-based counterparts and much superior to PG-based polyesters.

Picture1

In the chart below, we compare can and coil coating formulated with MPO and reveal its clear advantages over MPG and NPG as raw materials:

 Reactant Wt. Ex. 1  Wt. Ex. 2  Wt. Ex. 3  Wt. Ex. 4  Wt. Ex. 4
IPA 221.7  221.7 221.7  58.77  50.4 
MPO  146.7   146.7 146.7   
AA 31.6   31.6 31.6  8.7  9.5 
MPG         32.8  
NPG          40.1 
CYMEL 303   10%  12% 14%  14% crystalline
Pencil Hardness  4H   4H 5H  5H   
Sward Hardness 48   52 44  54   
60 deg. Gloss  85   92 99 99  
Bend Test  0-T   0-T   0-T   6-T  
Adhesion (water)  Pass   Pass  Pass    
Gardner (in/lbs) 160   160  160    
Stain Resistance  Excellent   Excellent  Excellent    
Rubber Resistance  200+   200+   200+     

 

Summary

The can and coil coating process is quite advanced, providing the industry with metal sheeting that performs much better than sheeting produced by traditional manufacturing methods.  The key component in coating should give the metal sheet the same durability and processability as the underlying metal itself. 2-Methyl-1,3-Propanediol (MPO) brings to the mix low viscosity, high amorphocity, high reactivity, and high compatibility, benefitting manufacturers both in process handling and finishing products for can and coil coating.

During the process, MPO is beneficial due to its low viscosity, stability with regard to oxidation, and the fact that it’s easy to level to produce a thin layer film, while improving compatibility in the system (no fish eyes), offering fast reaction, having a low melting point, and staying in liquid form at room temperature.

In final products, MPO delivers high clarity to guarantee the right coloring, high adhesion, flexibility (pliability), wear resistance, high temperature resistance, low Tg, bending without becoming brittle or cracking, a wide range of elastomeric properties, abrasion resistance, UV light resistance, and great compatibility with other polymers and solvents.

As a result, metal sheets coated with the MPO modified coatings can endure the same processing procedure as the base metal itself: folding, grinding, pounding, cutting, layer separation, baking, and high vibration.

Gantrade has more technical data to share on MPO usage in Can and Coil coating applications. Please contact the sales and technical team at Gantrade to learn how MPO’s use can optimize your processes and products for greater efficiency in production and higher performance in the marketplace.

HAVE QUESTIONS?

GET IN TOUCH